This is version . It is not the current version, and thus it cannot be edited.
[Back to current version]   [Restore this version]

Pohdimme eilen TTgoK:n peli-illassa kysymystä, millaisilla turnausmeriiteillä tulee korottaa ja millaisilla ei, siis minimi- ja maksimivaatimuksista. Arvostaisin muiden luokittajien (Jaakko, Paavo jne.) ja muiden kontribuutioita.

Jos lähdetään siitä, että turnaustulokset ovat ensisijainen informaation lähde, ongelmaksi tulee turnaustulosten vertailu keskenään. Mikä on normaalia satunnaisvaihtelua luokituksen sisällä ja mikä ei? Oletetaan nyt yksinkertaisuuden vuoksi, että vastustajien luokitukset ovat kohdallaan tai niihin mahdollisesti tehtävät "päänahkakorjaukset" on jo tehty.

Turnausvoittojen jakauma turnauspelien sarjoissa on binomijakauma. Turnauspelien jono muistuttaa (eri tavoilla painotettujen) kolikoiden heittämistä. Tulos on käytännöllisesti katsoen aina joko voitto tai tappio. Joskus tulos on jigo, mutta jigot voidaan tarvittaessa helposti ottaa huomioon. Silloin voittojen määrien jakauma turnauspelien sarjoissa on trinomijakauma. Mitä suurempi turnauspelien määrä on, sitä enemmän voittojen määrän jakauma noudattaa normaalijakaumaa.

Binomijakauman kertymäfunktion arvoja laskevalla Java- appletilla voi leikkiä ja laskeskella erilaisia arvoja erilaisilla voittamistodennäköisyyksillä ja voittosuhteilla- ja määrillä. Huomautettakoon, että tuo appletilla laskee oikein vain, jos onnistumistodennäköisyys on vakio. Go-turnauksessahan onnistumistodennäköisyyttä ei tiedetä tarkasti ja se on eri eri peleissä eri vastustajia vastaan. Tuo applet antaa kuitenkin jonkilaisen kuvan binomijakauman käyttäytymisestä erilaisilla arvoilla. (Kertymäfunktio kertoo kuinka suuri osa tuloksista on enintään yhtä hyviä kuin annettu tulos. Vähentämällä kertomafunktion arvo 1:stä kertoo kuinka suuri osa tuloksista on parempia kuin annettu tulos.)

Seuraavassa lasken kuinka suuressa "top prosentissa" tulos on. Kyseessä on summa todennäköisyyksistä, että tulee täsmälleen yhtä monta voittoa tai enemmän.

Muutama esimerkki onnistumistodennäköisyydellä 0.5:

3/6: 65% 4/6: 34% 5/6: 11% 6/6: 2%

6/12: 62% 8/12: 20% 10/12: 2% 12/12: 0.02%

9/18: 59% 12/18: 12% 15/18: 0.4% 18/18: --

12/24: 58% 16/24: 8% 20/24: 0.07% 24/24: --

Muutama esimerkki onnistumistodennäköisyydellä 0.4:

3/6: 46% 4/6: 18% 5/6: 4% 6/6: 0.4%

6/12: 34% 8/12: 6% 10/12: 0.3% 12/12: --

9/18: 26% 12/18: 2% 15/18: 0.02% 18/18: --

12/24: 2% 16/24: 0.8% 20/24: -- 24/24: --

-- Markku Jantunen, 10.4. 2003

Add new attachment

Only authorized users are allowed to upload new attachments.
« This particular version was published on 10-Apr-2003 12:16 by 194.241.75.27.