Pohdimme eilen TTgoK:n peli-illassa kysymystä, millaisilla turnausmeriiteillä tulee korottaa ja millaisilla ei, siis minimi- ja maksimivaatimuksista. Arvostaisin muiden luokittajien (Jaakko, Paavo jne.) ja muiden kontribuutioita.

Jos lähdetään siitä, että turnaustulokset ovat ensisijainen informaation lähde, ongelmaksi tulee turnaustulosten vertailu keskenään. Mikä on normaalia satunnaisvaihtelua luokituksen sisällä ja mikä ei? Oletetaan nyt yksinkertaisuuden vuoksi, että vastustajien luokitukset ovat kohdallaan tai niihin mahdollisesti tehtävät "päänahkakorjaukset" on jo tehty.

Turnausvoittojen jakauma turnauspelien sarjoissa on binomijakauma. Turnauspelien jono muistuttaa (eri tavoilla painotettujen) kolikoiden heittämistä. Tulos on käytännöllisesti katsoen aina joko voitto tai tappio. Joskus tulos on jigo, mutta jigot voidaan tarvittaessa helposti ottaa huomioon. Silloin voittojen määrien jakauma turnauspelien sarjoissa on trinomijakauma. Mitä suurempi turnauspelien määrä on, sitä enemmän voittojen määrän jakauma noudattaa normaalijakaumaa.

Binomijakauman [kertymäfunktion arvoja|http://www.ciphersbyritter.com/JAVASCRP/BINOMPOI.HTM#Binomial] laskevalla Java- appletilla voi leikkiä ja laskeskella erilaisia arvoja erilaisilla voittamistodennäköisyyksillä ja voittosuhteilla- ja määrillä. Huomautettakoon, että tuo appletilla laskee oikein vain, jos onnistumistodennäköisyys on vakio. Go-turnauksessahan onnistumistodennäköisyyttä ei tiedetä tarkasti ja se on eri eri peleissä eri vastustajia vastaan. Tuo applet antaa kuitenkin jonkilaisen kuvan binomijakauman käyttäytymisestä erilaisilla arvoilla. (Kertymäfunktio kertoo kuinka suuri osa tuloksista on enintään yhtä hyviä kuin annettu tulos. Vähentämällä kertomafunktion arvo 1:stä kertoo kuinka suuri osa tuloksista on parempia kuin annettu tulos.) 

Seuraavassa lasken kuinka suuressa "top prosentissa" tulos on. Kyseessä on summa todennäköisyyksistä, että tulee täsmälleen yhtä monta voittoa tai enemmän.

Muutama esimerkki onnistumistodennäköisyydellä 0.5:

|3/6|65%|6/12|62%|9/18|59%|12/24|58%|
|4/6|34%|8/12|20%|12/18|12%|16/24|8%|
|5/6|11%|10/12|2%|15/18|0.4%|20/24|0.07%|
|6/6|2%|12/12|0.02%|18/18|--|24/24|--|

|   |   |    |   |7/15|70%|
|3/5|50%|5/10|62%|8/15|50%|
|   |   |6/10|38%|9/15|30%|
|   |   |    |   |10/15|15%|
|   |   |7/10|17%|11/15|6%|
|4/5|19%|8/10|5%|12/15|2%|
|   |   |    |  |13/15|0.4%|
|   |   |9/10|1%|14/15|0.05%|
|5/5|3%|10/10|0.1%|15/15|--|

Muutama esimerkki onnistumistodennäköisyydellä 0.4:

|3/6|46%|
|4/6|18%|
|5/6|4%|
|6/6|0.4%|

|6/12|34%|
|8/12|6%|
|10/12|0.3%|
|12/12|--|

|9/18|26%|
|12/18|2%|
|15/18|0.02%|
|18/18|--|

|12/24|2%|
|16/24|0.8%|
|20/24|--|
|24/24|--|

|3/5|32%|    
|4/5|8%|
|5/5|1%|

|5/10|37%|
|6/10|16%|
|7/10|5%|
|8/10|1%|
|9/10|0.1%|
|10/10|0.01%|


|7/15|39%|
|8/15|21%|
|9/15|10%|
|10/15|3%|
|11/15|0.9%|
|12/15|0.2%|
|13/15|0.03%|
|14/15|--|
|15/15|--|

Paremman tuntuman saamiseksi asiaan voisi katsoa seuraavaksi menneistä go-kongresseista, kuinka todennäköisiä kuinkakin suuret voittoprosentit olivat muutamaa alinta ja ylintä McMahon-ryhmää lukuun ottamatta. Arvelen, että 5/10:stä poikkeavat tulokset valtaosassa McMahon-ryhmiä ovat harvinaisempia kuin kolikonheittokoetta katsoen voisi ajatella, koska McMahon-turnauksessa vastuksen voi odottaa kovenevan voiton jälkeen ja helpottuvan tappion jälkeen.

-- [Markku Jantunen], 10.4. 2003