At line 542 changed 3 lines |
;:r = n/2 - z * sqrt(n) / 2 |
;:s = 1 + n/2 - z * sqrt(n) / 2 |
;:CL = [ x(r), x(s) ] järjestetyssä aineistossa x(1) ... x(n) |
;:{{{r = n/2 - z * sqrt(n) / 2}}} |
;:{{{s = 1 + n/2 + z * sqrt(n) / 2 }}} |
;:{{{CL = [ x(r), x(s) ] järjestetyssä aineistossa x(1) ... x(n) }}} |
;:{{{Lähde: Sarna S, Kliinisen biostatistiikan kurssimoniste, syksy 2004.}}} |
At line 546 changed one line |
;: ''Huom, Matti: tuo Sarnan monisteen kaava vaikuttaa epäilyttävältä, onko se oikein? Muistikuvani on että sen pitäisi olla'' n/2 +- z * sqrt(n) / 2 |
Tässä siis lasketaan kaksi järjestyslukua r ja s, ja valitaan järjestetystä aineistosta näin monennet alkiot. Nämä sitten edustavat luottamusvälin päätepisteitä. Esimerkiksi 95% luottamusvälille z saa arvon 1,96. |
At line 548 changed one line |
Tässä siis lasketaan kaksi järjestyslukua r ja s, ja valitaan järjestetystä aineistosta näin monennet alkiot. Nämä sitten edustavat luottamusvälin päätepisteitä. 95% luottamusvälille z saa arvon 1,96. Tällaisen luottamusväliarvon käyttö on täysin perusteltavissa, toisin kuin yritys käyttää jonkin ''oletetun'' jakauman prosenttipistettä. |
Tällaisen luottamusväliarvon käyttö on täysin perusteltavissa, toisin kuin yritys käyttää jonkin ''oletetun'' jakauman prosenttipistettä, saati sellaisen kertymää. |
At line 552 added 11 lines |
|
Olli: Poistin vain julkisuuden, itse toki jatkan tämän mielenkiintoisen ongelman tutkimista. Näinollen myös osaltani kaikki keskustelu siirtyy ei-julkisille kanaville. |
|
-- Lauri |
|
Olli, minä en maininnut luokittamista tässä keskustelussa ensimmäisenä, vaan Lauri esimerkissään. Koska |
onnistuit taas kerran viemään keskustelun täysin sivuraiteille, ja koska kirjoittamisestani |
näyttää Laurillekin olevan vain mieliharmia, en jatka keskustelua enää. |
|
-- Kari |
|